湿法制粒

来自医学百科
112.247.67.26讨论2014年2月6日 (四) 12:59的版本 (以“===制粒=== 制粒是把粉末、熔融液、水溶液等状态的物料经加工制成具有一定形状与大小粒状物的操作。 几乎所有的固体...”为内容创建页面)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)

制粒[编辑 | 编辑源代码]

制粒是把粉末、熔融液、水溶液等状态的物料经加工制成具有一定形状与大小粒状物的操作。

几乎所有的固体制剂的制备过程都离不开制粒过程。所制成的颗粒可能是最终产品,如颗粒剂;也可能是中间产品,如片剂。

制粒操作使颗粒具有某种相应的目的性,以保证产品质量和生产的顺利进行。如在颗粒剂、胶囊剂中颗粒是产品,制粒的目的不仅仅是为了改善物料的流动性、飞散性、黏附性及有利于计量准确、保护生产环境等,而且必须保证颗粒的形状大小均匀、外形美观等。而在片剂生产中颗粒是中间体,不仅要改善流动性以减少片剂的重量差异,而且要保证颗粒的压缩成型性。制粒方法有多种,制粒方法不同,即使是同样的处方不仅所得制粒物的形状、大小、强度不同,而且崩解性、溶解性也不同,从而产生不同的药效。因此,应根据所需颗粒的特性选择适宜的制粒方法。

在医药生产中广泛应用的制粒方法可以分为三大类:湿法制粒、干法制粒喷雾制粒,其中湿法制粒应用最为广泛。此外,还有一种新型制粒法――液相中晶析制粒法。  

湿法制粒[编辑 | 编辑源代码]

湿法制粒是在药物粉末中加入黏合剂,靠黏合剂的桥架或黏结作用使粉末聚结在一起而制备颗粒的方法。

湿法制粒包括挤压制粒、转动制粒、流化制粒和搅拌制粒等。

湿法制成的颗粒经过表面润湿,具有颗粒质量好,外形美观、耐磨性较强、压缩成型性好等优点,在医药工业中应用最为广泛。

湿法制粒机理 湿法制粒首先是黏合剂中的液体将药物粉粒表面润湿,是粉粒间产生黏着力,然后在液体架桥与外加机械力的作用下制成一定形状和大小的颗粒的方法。经干燥后最终以固体桥的形式固结。  

制粒机理[编辑 | 编辑源代码]

1.粒子间的结合力[编辑 | 编辑源代码]

制粒时多个粒子粘结而形成颗粒,Rumpf提出粒子间的结合力有五种不同方式[10]:  

(1)固体粒子间引力[编辑 | 编辑源代码]

固体粒子间发生的引力来自范德华力(分子间引力)、静电力和磁力。这些作用力在多数情况下虽然很小,但粒径<50μm时,粉粒间的聚集现象非常显著。这些作用随着粒径的增大或颗粒间距离的增大而明显下降,在干法制粒中范德华力的作用非常重要。  

(2)自由可流动液体[编辑 | 编辑源代码]

(freely movable liquid)产生的界面张力和毛细管力 以可流动液体作为架桥剂进行制粒时,粒子间产生的结合力由液体的表面张力和毛细管力产生,因此液体的加入量对制粒产生较大影响。液体的加入量可用饱和度S表示:在颗粒的空隙中液体架桥剂所占体积(VL)与总空隙体积(VT)之比,即 。

液体在粒子间的充填方式由液体的加入量决定,参见图16-25。(A)干粉状态;(a)S≤0.3时,液体在粒子空隙间充填量很少,液体以分散的液桥连接颗粒,空气成连续相,称钟摆状(pendular state);(b)适当增加液体量0.3<S<0.8时,液体桥相连,液体成连续相,空隙变小,空气成分散相,称索带状(funicularstate);(c)液体量增加到充满颗粒内部空隙(颗粒表面还没有被液体润湿)S≥0.8时,称毛细管状(capillary state);(d)当液体充满颗粒内部与表面S≥1时,形成的状态叫泥浆状(slurry state)。毛细管的凹面变成液滴的凸面。

一般,在颗粒内液体以悬摆状存在时,颗粒松散;以毛细管状存在时,颗粒发粘,以索带状存在时得到较好的颗粒。可见液体的加入量对湿法制粒起着决定性作用。  

(3)不可流动液体[编辑 | 编辑源代码]

(immobile liquid)产生的附着力与粘着力 不可流动液体包括高粘度液体和吸附于颗粒表面的少量液体层(不能流动)。因为高粘度液体的表面张力很小,易涂布于固体表面,靠粘附性产生强大的结合力;吸附于颗粒表面的少量液体层能消除颗粒表面粗糙度,增加颗粒间接触面积或减小颗粒间距,从而增加颗粒间引力等,如图16-26A[11]。淀粉糊制粒产生这种结合力。  

(4)粒子间固体桥[编辑 | 编辑源代码]

(solid bridges) 固体桥(图16-26B)形成机理可由以下几方面论述。①结晶析出?架桥剂溶液中的溶剂蒸发后析出的结晶起架桥作用;②粘合剂固化?液体状态的粘合剂干燥固化而形成的固体架桥;③熔融?由加热熔融液形成的架桥经冷却固结成固体桥。④烧结和化学反应产生固体桥。制粒中常见的固体架桥发生在粘合剂固化或结晶析出后,而熔融?冷凝固化架桥发生在压片,挤压制粒或喷雾凝固等操作中。  

(5)粒子间机械镶嵌[编辑 | 编辑源代码]

(mechanical interlocking bonds) 机械镶嵌发生在块状颗粒的搅拌和压缩操作中。结合强度较大(如图16-26C),但一般制粒时所占比例不大。

由液体架桥产生的结合力主要影响粒子的成长过程,制粒物的粒度分布等,而固体桥的结合力直接影响颗粒的强度和其它性质,如溶解度。

湿法制粒首先是液体将粉粒表面润湿,水是制粒过程中最常用的液体,制粒时含湿量对颗粒的长大非常敏感。研究结果表明,含湿量与粒度分布有关,即含湿量大于60%时粒度分布较均匀,含湿量在45%~55%范围时粒度分布较宽。科学家们为找到最适宜含湿量的计算方法作了不少努力,普遍认为湿式转动制粒时第一粒子间的液体以毛细管状存在。  

2.从液体架桥到固体架桥的过渡[编辑 | 编辑源代码]

在湿法制粒时产生的架桥液经干燥后固化,形成一定强度的颗粒。从液体架桥到固体架桥的过渡主要有以下二种形式:  

(1)架桥液中被溶解的物质[编辑 | 编辑源代码]

(包括可溶性粘合剂和药物)经干燥后析出结晶而形成固体架桥。  

(2)高粘度架桥剂靠粘性使粉末聚结成粒[编辑 | 编辑源代码]

干燥时粘合剂溶液中的溶剂蒸发除去,残留的粘合剂固结成为固体架桥。