淀粉

来自医学百科

淀粉葡萄糖的高聚体,在餐饮业又称芡粉,通式是(C6H10O5)n,水解到二糖阶段为麦芽糖,化学式是(C12H22O11),完全水解后得到葡萄糖,化学式是(C6H12O6 )。淀粉有直链淀粉支链淀粉两类。淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高。

Bk121.jpg

  

简介[编辑 | 编辑源代码]

淀粉有直链淀粉和支链淀粉两类。直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元。在天然淀粉中直链的约占22%~26%,它是可溶性的,其余的则为支链淀粉。当用碘溶液进行检测时,直链淀粉液呈显蓝色,而支链淀粉与碘接触时则变为红棕色。(原因是:具有长螺旋段的直链淀粉可与长链的聚I3 - 形成复合物并产生蓝色。直链淀粉-碘复合物含有19%的碘。支链淀粉与碘复合生成微红-紫红色,这是因为支链淀粉的支链对于形成长链的聚I 3 - 而言是太短了。)

淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高,大米中含淀粉62%~86%,麦子中含淀粉57%~75%,玉蜀黍中含淀粉65%~72%,马铃薯中则含淀粉12%~14%。淀粉是食物的重要组成部分,咀嚼米饭等时感到有些甜味,这是因为唾液中的淀粉酶将淀粉水解成了二糖--麦芽糖。食物进入胃肠后,还能被胰脏分泌出来的唾液淀粉酶水解,形成的葡萄糖被小肠壁吸收,成为人体组织的营养物。支链淀粉部分水解可产生称为糊精的混合物。糊精主要用作食品添加剂、胶水、浆糊,并用于纸张和纺织品的制造(精整)等。

Bk122.jpg

  

变性淀粉[编辑 | 编辑源代码]

一、预糊化淀粉:

预糊化淀粉是一种加工简单,用途广泛的变性淀粉,应用时只要用冷水调成糊,免除了加热糊化的麻烦。广泛应用与医药、食品、化妆品饲料石油钻井、金属铸造、纺织、造纸等很多行业。

淀粉的糊化:淀粉粒在适当温度下(各种来源的淀粉所需温度不同,一般60~80℃)在水中溶胀、分裂、形成均匀糊状溶液的作用称为糊化作用。糊化作用的本质是淀粉粒中有序及无序(晶质与非晶质)态的淀粉分子之间的氢键断开,分散在水中成为胶体溶液

糊化作用的过程可分为三个阶段:(1)可逆吸水阶段,水分进入淀粉粒的非晶质部分,体积略有膨胀,此时冷却干燥,颗粒可以复原,双折射现象不变;(2)不可逆吸水阶段,随着温度升高,水分进入淀粉微晶间隙,不可逆地大量吸水,双折射现象逐渐模糊以至消失,亦称结晶“溶解”, 淀粉粒胀至原始体积的50~100倍;(3)淀粉粒最后解体,淀粉分子全部进入溶液。

糊化后的淀粉又称为α-化淀粉。将新鲜制备的糊化淀粉浆脱水干燥,可得易分散与凉水的无定形粉末,即“可溶性α-淀粉”。

2、淀粉糊化作用的测定方法:有光学显微镜法,电子显微镜法,光传播法,粘度测定法,溶胀和溶解度的测定,酶的分析,核磁共振激光散射法等。工业上常用粘度测定法,溶胀和溶解度的测定。 二、酸变性淀粉

淀粉牙签

在糊化温度以下,用无机酸处理淀粉,改变其性质的产品称为酸变性淀粉。

反应机理:在用酸处理淀粉的过程中,酸作用于糖苷键使淀粉分子水解,淀粉分子变小。淀粉颗粒是由直链淀粉和支链淀粉组成,前者具有α-1,4键,后者除α-1,4键,还有少量α-1,6键,这两种糖苷键被酸水解的难易存在差别。由于淀粉颗粒结晶结构的影响,直链淀粉分子间经由氢键结合成晶态结构,酸渗入困难,其α-1,4键不易被酸水解。而颗粒中无定形区域的支链淀粉分子的α-1,4键、α-1,6键较易被酸渗入,发生水解。

工艺与原理:通常制取酸变性淀粉是使用浓淀粉淤浆,含固量约为36%~40%,加热到糊化温度之下(常为40~60℃),加入无机酸并搅拌一个小时或几个小时。当达到所要求的酸度或转化度时,

三、氧化淀粉

许多试剂都能氧化淀粉,但是工业生产中最常用的是碱性次氯酸盐。用次氯酸盐氧化的淀粉被称为“氯化淀粉”(虽然处理中并没有把氯引进淀粉分子内)。

淀粉乳浆的次氯酸盐氧化是在碱性次氯酸钠溶液中进行的,此时需要控制pH、温度和次氯酸盐、碱和淀粉的浓度。用约3%的氢氧化钠溶液调节pH至8~10,在规定时间内添加有效氯5~10%的次氯酸盐溶液。用添加氢氧化钠稀溶液的方法来控制pH,并中和反应中生成的酸性物质。改变时间、温度、pH值、淀粉品种、次氯酸盐浓度和次氯酸盐添加速度,能够生产出多种不同的产品。当氧化反应达到要求程度时,将pH降至5~7,加入亚硫酸氢钠溶液或二氧化硫气体以除去其中多余的氯来终止反应。

变性淀粉的分类

目前,变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据处理方式来进行。

(1)物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。

(2)化学变性:用各种化学试剂处理得到的变性淀粉。其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。

(3)酶法变性(生物改性):各种酶处理淀粉。如α、β、γ-环状糊精麦芽糊精、直链淀粉等。

(4)复合变性:采用两种以上处理方法得到的变性淀粉。如氧化交联淀粉、交联酯化淀粉等。采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。

另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羧甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。

淀粉与糊精的区别:糊精是由淀粉制造而来,两者的区别是分子量不同,就象蛋白质多肽的关系。  

淀粉的种类[编辑 | 编辑源代码]

勾芡用的淀粉,又叫做团粉,

各种淀粉

是由多个葡萄糖分子缩合而成的多糖聚合物。烹调用的淀粉,主要有绿豆淀粉、木薯淀粉、甘薯淀粉、红薯淀粉、马铃薯淀粉、麦类淀粉、菱角淀粉、藕淀粉、玉米淀粉等。淀粉不溶于水,在和水加热至60℃左右时(淀粉种类不同,糊化温度不一样),则糊化成胶体溶液。勾芡就是利用淀粉的这种特性。

绿豆淀粉

绿豆淀粉是最佳的淀粉,一般很少使用。它是由绿豆用水浸涨磨碎后,沉淀而成的。特点是:粘性足,吸水性小,色洁白而有光泽。

马铃薯淀粉

马铃薯淀粉是目前家庭一般常用的淀粉,是将马铃薯磨碎后,揉洗、沉淀制成的。特点是:粘性足,质地细腻,色洁白,光泽优于绿豆淀粉,但吸水性差。

小麦淀粉

小麦淀粉是麦麸洗面筋后,沉淀而成或用面粉制成。特点是:色白,但光泽较差,质量不如马铃薯粉,勾芡后容易沉淀。

甘薯淀粉

甘薯淀粉

甘薯淀粉特点是吸水能力强,但粘性较差,无光泽,色暗红带黑,由鲜薯磨碎,揉洗,沉淀而成。

此外,还有玉米淀粉、菱角淀粉、莲藕淀粉,荸荠淀粉等。  

勾芡影响菜肴[编辑 | 编辑源代码]

勾芡是否适当,对菜肴的质量影响很大,因此,勾芡是烹调的基本功之一。勾芡大多用于熘、滑、炒等烹调技法。这些烹调方法的共同特点是:旺火速成。用这种方法烹调的菜肴,基本上不带汤。但是由于烹调时加入了某些酱汁调料和原料本身出水,使菜肴看上去汤汁增多了,通过勾芡,使汁液的浓稠度增加了,并附于原料的表面,从而达到菜肴光泽、滑润、柔嫩和鲜美的风味。

勾芡的用法

勾芡一般用两种方法。一种是淀粉汁加调味品,俗称“对汁”,多用于火力旺,速度快的熘、爆等方法烹调的菜肴。另一种是单纯的淀粉汁,又叫“湿淀粉”,多用于一般的炒菜。浇汁也是勾芡的一种,又称为薄芡、琉璃芡,多用于煨、烧、扒及汤菜。根据烹调方法及菜肴特色,大体上有以下几种芡汁用法:

包芡一般用于爆炒方法烹调的菜肴。粉汁最稠,目的是使芡汁全包到原料上,如鱼香肉丝、炒腰花等,都是用包芡,吃完菜后,盘底基本不留卤汁。

豌豆淀粉

糊交一般用于熘、滑、焖、烩方法烹制的菜肴。粉汁比包芡稀,用处是把菜肴的汤汁变成糊状,达到汤菜融合,口味滑柔,如:糖醋排骨、糖醋鲤鱼等。

流芡粉汁较稀,一般用于大型或整体的菜肴,其作用是增加菜肴的滋味和光泽。一般是在菜肴装盘后,再将锅中卤汁加热勾芡,然后浇在菜肴上,一部分沾在菜上,一部分呈琉璃状态,食后盘内可剩余部分汁液。

奶汤芡是芡汁中最稀的,又称薄芡。一般用于烩烧的菜肴,如:麻辣豆腐、虾仁锅巴等。目的是使菜肴汤汁加浓一点而达到色美味鲜的要求。

勾芡,就是在菜肴接近成熟时,将调匀的淀粉汁淋在菜肴上或汤汁中,使菜肴汤汁浓稠,并粘附或部分粘附于菜肴之上的过程。袁牧在《随园食单.用纤须知》中说:“俗名豆粉为纤者,即拉船用纤也。须顾名思义。因治肉者要作团而不能合,要作羹而不能腻,故以粉牵合之。煎炒之时,虑肉贴锅,必至焦老,故用粉以持之。此纤义也。”芡是由纤转音而来,所以现在通称之为“勾芡”。

由于菜肴各自不同的风味要求,勾芡主要有以下作用:

1、增加汤汁的粘稠度。菜肴在加热过程中,原料中的汁液会向外流,与添加的汤水及液体调味品便融合形成了卤汁。一般炒菜中的卤汁较稀薄,不易粘附在原料表面,成菜后会产生“不入味”的感觉。勾芡后,芡汁的糊化作用增加了卤汁的粘稠度,使卤汁能够较多地附着在菜肴之上,提高了人们对菜肴滋味的感受。

2、芡汁勾入菜肴中,芡汁会紧包原料,从而制止了原料内部水分外溢,这样做既保持了菜肴鲜香滑嫩的风味特点,又使菜肴形体饱满而不易散碎。

3、勾芡后,由于淀粉的糊化,具有透明的胶体光泽,能将菜肴与调味色彩更加鲜明地反映出来,使菜肴色泽更加光亮美观。

4、菜肴勾芡后能使汤汁变浓稠,可减缓原料内部热量的散发,使菜肴具有保温性,延长了菜肴的冷却时间,有利于食客进食热菜肴。  

烹饪如何用淀粉[编辑 | 编辑源代码]

淀粉也就是俗称的“芡”,为白色无味粉末,主要从玉米、甘薯等含淀粉多的物质中提取。可直接食用,也可用于酿酒,同时还是经常出入筵席的烹调辅料,在烹饪中具有无可替代的效用。

不过用好淀粉可是大有学问,一般中国烹调中大致有三种用淀粉的方法,就是挂糊、上浆和勾芡。挂糊就是下锅前在原料上加干淀粉;上浆就是下锅前在原料上加水淀粉;勾芡就是在起锅前加水淀粉使菜肴的汤变稠。那么到底什么样的菜肴,如何用淀粉才合适呢?

淀粉

如果您是要爆、炒、熘菜肴,芡汁一定要够浓,这样才能裹住原料,不会让汤汁四溢;如果您是扒、烩、烧菜肴,浓度要略底但仍要属浓芡,这样汤汁既能呈流动感又能与原料合为一体;如果您是做汤汁流动的菜肴,可施薄芡,只要汤的浓度达到您需要的程度就可以了,太浓会糊,太稀又会显得寡淡。

用淀粉时控制油温十分重要。烹调上浆的菜肴时,油温太高,淀粉容易黏结成块;油温太低,淀粉容易与原料脱离,也就失去了保护层的作用,所以最好在有少量油烟出现时下锅;而在挂糊煎炸时,追求的是焦黄松脆,这时就需要油温高一些,油烟大量出现时下锅为最佳时机;勾芡时也要掌握好时机,太早容易发糊黏锅,太晚又会分布不匀,这就需要我们见机行事了。  

淀粉在制剂制备中的应用[编辑 | 编辑源代码]

总体来说,淀粉具有不溶于水、水中分散、60~70℃溶胀的特点。常被用作稀释剂、粘合剂、崩解剂,并可用来制备糊精和淀粉浆。

1、用作稀释剂(Diluents):稀释剂(或称为填充剂,Fil1ers)的主要作用是用来填充片剂的重量或体积,以便于制剂成型和分剂量,从而便于压片;常用的填充剂有淀粉类、糖类、纤维素类和无机盐类等。

以淀粉作为稀释剂时,比较常用的是玉米淀粉,它的性质非常稳定,与大多数药物不起作用,价格也比较便宜,吸湿性小、外观色泽好,在实际生产中,常与可压性较好的糖粉、糊精混合使用,这是因为淀粉的可压性较差,若单独使用,会使压出的药片过于松散。

2、用作粘合剂(Adhesives):某些药物粉末本身不具有粘性或粘性较小,需要加入淀粉浆等粘性物质,才能使其粘合起来,这时所加入的粘性物质就称为粘合剂。

淀粉浆(俗称淀粉糊)是片剂中最常用的粘合剂,常用8%~15%的浓度,并以10%淀粉浆最为常用;若物料可压性较差,可再适当提高淀粉浆的浓度到20%,相反,也可适当降低淀粉浆的浓度,如氢氧化铝片即用5%淀粉浆作粘合剂。淀粉浆的制法主要有煮浆和冲浆两种方法,都是利用了淀粉能够糊化的性质。所谓糊化(Gelatinization)是指淀粉受热后形成均匀糊状物的现象(玉米淀粉完全糊化的温度是77℃)。糊化后,淀粉的粘度急剧增大,从而可以作为片剂的粘合剂使用。具体说来,冲浆是将淀粉混悬于少量(1~1.5倍)水中,然后根据浓度要求冲入一定量的沸水,不断搅拌糊化而成;煮浆是将淀粉混悬于全部量的水中,在夹层容器中加热并不断搅拌(不宜用直火加热,以免焦化),直至糊化。因为淀粉价廉易得且粘合性良好,所以凡在使用淀粉浆能够制粒并满足压片要求的情况下,大多数选用淀粉浆这种粘合剂。

3、用作崩解剂(Disintegrants):崩解剂是使片剂在胃肠液中迅速裂碎成细小颗粒的物质,除了缓(控)释片以及某些特殊用途的片剂以外,一般的片剂中都应加入崩解剂。由于它们具有很强的吸水膨胀性,能够瓦解片剂的结合力,使片剂从一个整体的片状物裂碎成许多细小的颗粒,实现片剂的崩解,所以十分有利于片剂中主药的溶解和吸收。

干淀粉是一种最为经典的崩解剂,含水量在8%以下,吸水性较强且有一定的膨胀性,较适用于水不溶性或微溶性药物的片剂,但对易溶性药物的崩解作用较差,这是因为易溶性药物遇水溶解产生浓度差,使片剂外面的水不易通过溶液层面透入到片剂的内部,阻碍了片剂内部淀粉的吸水膨胀。在生产中,一般采用外加法、内加法或“内外加法”来达到预期的崩解效果。

淀粉作为片剂崩解剂的缺点:首先,淀粉的可压性不好,用量多时,可影响片剂的硬度。其次,淀粉的流动性不好,外加淀粉过多会影响颗粒的流动性。

4、制备糊精:糊精 (C6H10O5)x,由淀粉经酸或热处理或经a-淀粉酶作用而成的不完全水解的产物,可用于制备各种液体或固体的胶粘剂。  

淀粉遇碘变蓝的特性[编辑 | 编辑源代码]

淀粉具有遇碘变蓝的特性,这是由淀粉本身的结构特点决定的。淀粉是白色无定形的粉末,由10%~30%的直链淀粉和70%~90%的支链淀粉组成。溶于水的直链淀粉借助分子内的氢键卷曲成螺旋状。如果加入碘液,碘液中的碘分子便嵌入到螺旋结构的空隙处,并且借助范德华力与直链淀粉联系在一起,形成了一种络合物。这种络合物能够比较均匀地吸收除了蓝光以外的其他可见光(波长范围为400~750 nm),从而使淀粉溶液呈现出蓝色来。  

适宜人群[编辑 | 编辑源代码]

一般人群均可食用。

1.发生过过敏者一定不要再吃;

2.老人、考试期间的学生、脑力工作者、高胆固醇便秘者可以多食用。  

从淀粉到氢气[编辑 | 编辑源代码]

氢气是一种清洁能源,但它的制取、存储和运输都很困难。美国科学家研究出一种用多糖制取氢的新技术,有望一举解决这几大问题。

以这项技术为基础,未来的氢动力汽车将以易于存储的碳水化合物如淀粉为燃料,碳水化合物和水在特殊的酶作用下分解产生氢气,通过燃料电池产生电力,驱动汽车前进。

据美国科学促进会EurekAlert网站报道,这一成果是美国弗吉尼亚理工学院、橡树岭国家实验室和乔治亚大学的科学家共同作出的,论文发表在《公共科学图书馆.综合》杂志上。

淀粉、纤维素等碳水化合物含有大量的氢,但它们非常稳定,只有在酶的作用下才会分解。科学家利用合成生物学的方法,使用由13种酶组成的混合物,将碳水化合物和水转变成二氧化碳和氢气。

实验显示,这一反应在约摄氏30度和1个大气压的条件下即可发生。将二氧化碳抽除后,氢气进入燃料电池产生电力,副产物水可以循环利用。在反应中,氢是主要产物,效率比自然界里厌氧菌分解生物物质产生氢的效率高3倍,每磅氢的成本可能低于1美元。

目前人类主要用天然气制取氢,气态的氢不易运输和储存,这些因素阻碍了氢动力汽车的发展。利用这项新技术,汽车无须携带氢气罐,而只需携带淀粉等碳水化合物,在运转时现场制取氢气。

研究人员说,燃料箱容量为12加仑的汽车可携带约27千克淀粉,相当于4千克氢,可供汽车行驶300英里。每千克淀粉产生的能量与1.12千克汽油相当。

美国能源部的一项长期目标是使氢存储技术的质量百分比达到12,即每千克的存储容器或存储材料能存储0.12千克的氢。此前没有技术能做到这一点,这项新技术利用多糖存储氢,质量百分比能达到13.8。