连锁遗传

来自医学百科

连锁遗传(linkage),位于同一染色体上的各个基因所决定的各个性状彼此伴随遗传的现象。是继G.J.孟德尔所揭示的两个基本遗传规律后的第3个基本遗传规律。

连锁遗传现象是W.贝特森和R.C.庞尼特于1906年在香碗豆 (Lathyrus odoratus)杂交试验中发现的。T.H.摩尔根等根据果蝇Drosophila melanogaster)试验(1910)的结果,逐渐形成了较完整的连锁遗传学说。其要点为:同一染色体上载有许多基因,呈直线排列,相互连锁构成 1个连锁群。某生物有多少对染色体就有多少个连锁群;位于不同染色体上的基因所控制的性状之间表现独立遗传的关系;连锁遗传的基因可以通过非姊妹染色单体间的交换而重组。交换是指来自双亲的一对同源染色体减数分裂粗线期双线期,非姊妹染色单体在对应位点上发生断裂和交互重接的过程。

连锁遗传普遍存在于真核生物和原核生物。例如使玉米子粒糊粉层成为有色的基因 C为无色基因 c的显性,使子粒胚乳饱满发育的基因Sh为凹陷不饱满基因sh的显性。将使有色、饱满的(CCShSh)与无色、凹陷的(ccshsh)两个纯合亲本杂交,F1(CcShsh)再与无色、凹陷(ccshsh)的亲本回交(测交),产生 8368粒测交子粒(它们虽然长在F1果穗上,但实际上已是测交子代Ft),其中有4032粒是有色、饱满的,4035粒是无色、凹陷的,两者分别与双亲的子粒性状相似;另有149粒是有色、凹陷的,152粒是无色、饱满的,两者都属于双亲子粒性状的重组型。所以F1测交产生的亲型测交子代为[(4032+4035)/8368]×100=96.4%,重组型测交子代为[(149+152)/8368]×100=3.6%。出现以上杂交和测交结果的机制是:①测交后代中亲型出现的频率多达96.4%,说明亲本之一的 C与Sh在从亲代对测交子代的传递过程中有伴随不分的趋势,亲本之二的 c和sh也表现同样的趋势。造成这种趋势的原因在于 C-c和Sh-sh两对基因是在1对同源染色体的不同位点上;前一亲本的基因型为,后一亲本的基因型为,因而F1的基因型为。照理,F1要产生CShcsh两种亲型配子,它们与测交亲本的csh配子受精结合,会出现和两种与双亲表型一样的测交子代。②测交后代中出现3.6%的重组型个体,是因为F1的少数孢母细胞在产生配子的减数分裂过程中,这对染色体在C-c和Sh-sh之间发生了非姊妹染色单体的交换,从而产生CshcSH两种重组型配子,它们与测交亲本的csh配子受精结合,产生和两种重组型测交子代。

连锁遗传的研究证实了基因在染色体上是按一定顺序和距离排列的,通过基因的交换,丰富了亲本遗传物质重组的内容,为生物进化过程中的选择创造了条件。在杂交育种工作中,如果所涉及的基因具有连锁遗传的关系,可根据其交换值的大小预测重组基因型出现的频率。为使杂种后代中能出现较多的理想类型,必须根据重组率的大小,确定杂种群体的种植规模。还可利用性状连锁的关系,根据一个性状的表现,对另一些性状进行选择或淘汰。