系统生物学

来自医学百科
Bk8y1.jpg

systems biology  

什么是系统生物学[编辑 | 编辑源代码]

“系统生物学” (systems biology) 一词,检索美国 NIH 的 PubMed 文献库最早出现在 Zieglgansberger W 和 Tolle TR 于 1993 年发表的一篇神经系统疾病研究的论文摘要中,根据 1968 年国际系统理论与生物学 (systems theory and biology) 会议定义为采用系统论方法研究生物学,1989 年在美国召开的生物化学系统论与生物数学国际会议探讨了生物学的系统论与计算生物学模型研究,依据胡德的定义,系统生物学是研究一个生物系统中所有组成成分 (基因、mRNA、蛋白质等) 的构成,以及在特定条件下这些组成成分间的相互关系的学科。20世纪中页贝塔朗菲定义“机体生物学”的“机体”为“整体”或“系统”概念,并阐述以开放系统论研究生物学的理论、数学模型与应用计算机方法等。也就是说,系统生物学不同于以往的实验生物学——仅关心个别的基因和蛋白质,它要研究所有的基因、所有的蛋白质、组分间的所有相互关系。显然,系统生物学是以整体性研究为特征的一种大科学。

系统理论和系统思想对于我国知识分子并不陌生。1980 年代在我国学术界曾经流行过“三论”——系统论、信息论和控制论与系统科学,奥地利科学家贝塔朗菲 (L. Bertalanffy) 在 1970 年代创立的“一般系统论” (general system theory)。尽管贝塔朗菲是以生物学家的身份去思考、研究并提出系统论的,但他的系统论并不仅仅适用于生命科学,而且适用于物理学、心理学、经济学和社会科学等各门学科。如果说过去所谈论的是指在理论生物学层面上的、普适性强的一般系统论,那么本文所要介绍的系统生物学 (systems biology),则是生命科学研究领域的一门组学、计算和转基因系统生物技术等成熟的迅速发展学科。1924~1928 年贝塔郎菲多次发表一般系统论的文章,阐述生物学中有机体概念,提出把有机体当作一个整体或系统来研究。第 10 届国际分子系统生物学会议称:贝塔郎菲为系统生物学先驱,除了系统生物学的词汇 (1993 年 Zieglgansberger W 和 Tolle TR) 是新的,贝塔郎菲开创的生物系统模型至今仍然很现代。自 20 世纪 60 年代,系统生态学、系统生理学,以及系统生物医学、系统医学、系统生物工程与系统遗传学的概念先后发表,20 世纪未细胞信号传导与基因调控的研究与系统论方法的结合,进入了分子细胞层次的系统生物学研究与发展。

作为人类基因组计划的发起人之一,美国科学家莱诺伊.胡德 (Leroy Hood) 也是系统生物学的组学 (omics) 生物技术开创者之一。在胡德看来,系统生物学和人类基因组计划有着密切的关系。正是在基因组学、蛋白质组学等新型大科学发展的基础上,孕育了系统生物学。反之,系统生物学的诞生进一步提升了后基因组时代的生命科学研究能力。1996 年在北京举办的第 1 届国际转基因动物学术研讨会,中科院曾邦哲(曾杰)阐述了系统论与生物遗传学、转基因研究等,1999 年于德国建立了系统生物科学与工程网(英文),表述生物系统结构论(structurity theory)的结构整合 (integrative)、调适稳态(stability)与层级建构(constructive) 等综合(synthetic)系统理论规律,并定义实验、计算 (computational)、工程方法的生物系统分析与人工生物系统研究。正如胡德所说,“系统生物学将是 21 世纪医学和生物学的核心驱动力”。基于这一信念,胡德在 1999 年年底辞去了美国西雅图市华盛顿大学的教职,与另外两名志同道合的科学家一起 2000 年创立了世界上第一个系统生物学研究所 (Institute for Systems Biology)。同时,2000 年日本举办了国际系统生物学会议,2000 年美国 E. Kool 重新定义合成生物学为基于系统生物学的基因工程。随后,系统生物学便逐渐得到了生物学家的认同,也唤起了一大批生物学研究领域以外的专家的关注。2002 年 03 月,美国《科学》周刊登载了系统生物学专集。该专集导论中的第一句话这样写道:“如果对当前流行的、时髦的关键词进行一番分析,那么人们会发现,‘系统’高居在排行榜上。”

系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合。第三步是把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。第四阶段是根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。系统生物学的目标就是要得到一个理想的模型,使其理论预测能够反映出生物系统的真实性。  

系统生物学的灵魂[编辑 | 编辑源代码]

——整合

作为后基因组时代的新秀,系统生物学与基因组学、蛋白质组学等各种“组学”的不同之处在于,它是一种整合型大科学。首先,它要把系统内不同性质的构成要素 (基因、mRNA、蛋白质、生物小分子等) 整合在一起进行研究。系统生物学研究所的第一篇研究论文,就是整合酵母的基因组分析和蛋白质组分析,研究酵母的代谢网络[2]。由于不同生物分子的研究难度不一样,技术发展程度不一样,目前对它们的研究水平有较大的差距。例如,基因组和基因表达方面的研究已经比较完善,而蛋白质研究就较为困难,至于涉及生物小分子的代谢组分的研究就更不成熟。因此,要真正实现这种整合还有很长的路要走。

对于多细胞生物而言,系统生物学要实现从基因到细胞、到组织、到个体的各个层次的整合。《科学》周刊系统生物学专集中一篇题为“心脏的模型化——从基因到细胞、到整个器官”的论文,很好地体现了这种整合性[3]。我们知道,系统科学的核心思想是:“整体大于部分之和”;系统特性是不同组成部分、不同层次间相互作用而“涌现”的新性质;对组成部分或低层次的分析并不能真正地预测高层次的行为。如何通过研究和整合去发现和理解涌现的系统性质,是系统生物学面临的一个带根本性的挑战。

系统生物学整合性的第三层含义是指研究思路和方法的整合。经典的分子生物学研究是一种垂直型的研究,即采用多种手段研究个别的基因和蛋白质。首先是在DNA水平上寻找特定的基因,然后通过基因突变、基因剔除等手段研究基因的功能;在基因研究的基础上,研究蛋白质的空间结构,蛋白质的修饰以及蛋白质间的相互作用等等。基因组学、蛋白质组学和其他各种“组学”则是水平型研究,即以单一的手段同时研究成千上万个基因或蛋白质。而系统生物学的特点,则是要把水平型研究和垂直型研究整合起来,成为一种“三维”的研究。此外,系统生物学还是典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。

系统生物学的整合性可以体现在两种不同的策略上。第一种就是胡德和系统生物学研究所采用的方式,选定一个较为简单的系统,如单细胞生物酵母,然后分析尽可能多的构成成分——基因组、转录组、蛋白质组、相互作用组,以揭示整个系统的行为。另外一种策略是吉尔曼 (A. G. Gilman) 领导的“信号转导联军”采用的,以一个较为复杂的系统 (G 蛋白介导的和与其相关的细胞信号转导系统) 为研究对象,采用尽可能多的研究手段去进行分析 (详细介绍见本刊 2002 年第 02 期第 36 页)。  

系统生物学的基础[编辑 | 编辑源代码]

——信息

在前分子生物学时代,生物学家把生命视为具有特殊“活力”的有机体,遵循着无机界不存在的法则进行生命活动。在分子生物学时代,研究者们把生命视为一架精密的机器,由基因和蛋白质根据物理化学的规律来运转。在后基因组时代,像胡德这种类型的科学家,把生命视为信息的载体,一切特性都可以从信息的流动中得到实现。

胡德提出,应该把生物学视为一门信息科学,也就是生物信息学与计算生物学。这个观点包含有三层意思。首先,生物学研究的核心——基因组,是数字化的 (digital)。生物学与所有其他学科,如物理学、化学、地理学,是完全不一样的科学,因为生物学以外的学科都只能通过类比的方式 (analog) 进行分析。既然生物学研究的核心是数字化的,因此生物学可以被完全破译。从理论上说,我们对生物学的把握应该超过其他任何一门学科。其次,生命的数字化核心表现为两大类型的信息,第一类信息是指编码蛋白质的基因,第二类信息是指控制基因行为的调控网络。显然,由一段 DNA 序列组成的基因是数字化的。值得强调的是,基因调控网络的信息从本质上说也是数字化的,因为控制基因表达的转录因子结合位点也是核苷酸序列。生物学是信息科学的第三层意思是,生物信息是有等级次序的,而且沿着不同的层次流动。一般说来,生物信息以这样的方向进行流动:DNA→mRNA→蛋白质→蛋白质相互作用网络→细胞→器官→个体→群体。这里要注意的是,每个层次信息都对理解生命系统的运行提供有用的视角。因此,系统生物学的重要任务就是要尽可能地获得每个层次的信息并将它们进行整合。

根据系统论的观点,构成系统的关键不是其组成的物质,而是组成部分的相互作用或部分之间的关系。这些相互作用或者关系,从本质上说就是信息。换一个角度来说,生命是远离平衡态的开放系统,为了维持其有序性,生命系统必须不断地与外部环境交换能量,以抵消其熵增过程。奥地利物理学家薛定谔 (E. Schrödinger) 早在 1940 年代发表的著作《生命是什么?》 (What is Life?) 中就已指出,生命以“负熵流”为食,热物理学家布里渊提出“负熵”是信息的概念,而“负熵”其实就是信息的另一种表示方法。因此,我们可以这样说,生命系统是一个信息流的过程,系统生物学就是要研究并揭示这种信息的运行规律。  

系统生物学的钥匙[编辑 | 编辑源代码]

——干涉

系统生物学一方面要了解生物系统的结构组成,另一方面是要揭示系统的行为方式。相比之下,后一个任务更为重要。也就是说,系统生物学研究的并非一种静态的结构,而是要在人为控制的状态下,揭示出特定的生命系统在不同的条件下和不同的时间里具有什么样的动力学特征。

凡是实验科学都有这样一种特征:人为地设定某种或某些条件去作用于被实验的对象,从而达到实验的目的。这种对实验对象的人为影响就是干涉 (perturbation)。传统生物学采用非干涉方法如形态观察或分类研究生物体。20 世纪形成的分子生物学等实验生物学的特点就是,科学家可以在实验室内利用各种手段干涉生物学材料,如通过诱导基因突变或修饰蛋白质,由此研究其性质和功能。系统生物学同样也是一门实验性科学,也离不开干涉这一重要的工具。

系统生物学中的干涉有这样一些特点。首先,这些干涉应该是有系统性的。例如人为诱导基因突变,过去大多是随机的;而在进行系统生物学研究时,应该采用的是定向的突变技术。上面所提到的对酵母的系统生物学研究,胡德等人就是把已知的参与果糖代谢的 9 个基因逐一进行突变,研究在每一个基因突变下的系统变化。果蝇受精开始到形成成熟个体一共有 66 个典型的发育阶段,不久前科学家利用基因芯片技术,对每一个发育阶段的基因表达谱进行了系统的研究。这也是一类系统性的干涉方式。其次,系统生物学需要高通量的干涉能力,如高通量的遗传变异。现有技术已经能做到在短时间内,把酵母的全部 6000 多个基因逐一进行突变。对于较为复杂的多细胞生物,可以通过 RNA 干涉新技术来实现大规模的基因定向突变。随着研究技术的发展,一定还会有许多新的干涉技术应用于系统生物学。

需要提请人们注意的是,以测定基因组全序列或全部蛋白质组成的基因组研究或蛋白质组研究等“规模型大科学”,并不属于经典的实验科学。这类工作中并不需要干涉,其目标只是把系统的全部元素测定清楚,以便得到一个含有所有信息的数据库。胡德把这种类型的研究称为“发现的科学” (discovery science),而把上述依赖于干涉的实验科学称为“假设驱动的科学” (hypothesis-driven science),因为选择干涉就是在做出假设。系统生物学不同于一般的实验生物学就在于,它既需要“发现的科学”,也需要“假设驱动的科学”。首先要选择一种条件(干涉),然后利用“发现的科学”的方法,对系统在该条件下的所有元素进行测定和分析;在此基础上做出新的假设,然后再利用“发现的科学”研究手段进行新研究。这两种不同研究策略和方法的互动和整合,是系统生物学成功的保证。

笔者还要再强调一点,在注重这两类研究手段的同时,不应该忽略系统生物学的另一个特点——对理论的依赖和建立模型的需求。在本文一开始介绍系统生物学的概况时,特别指出过,系统生物学的理想就是要得到一个尽可能接近真正生物系统的理论模型;建模过程贯穿在系统生物学研究的每一个阶段。离开了数学和计算机科学,就不会有系统生物学。也许正是基于这一考虑,科学家把系统生物学分为“湿”的实验部分(实验室内的研究)和“干”的实验部分(计算机模拟和理论分析)。“湿”、“干”实验的完美整合才是真正的系统生物学。1999 年初系统生物科学与工程网 (genbrain biosystem network) 表述生物系统的研究方法为基于系统论的实验、计算机与工程等方法,随着化学生物学、计算生物学、合成生物学的发展,高通量生物芯片、计算机数学建模和基因人工合成等构成了系统生物学的技术基础。

从某种意义上说,系统生物学在中国有很好的基础。1990 年代中西医学与哲学、系统学探讨中,已经提出了系统医学 (Zeng BJ, 1992) 等概念。我们的传统医学就是把人体视为一个系统,通过测定和改变系统的输入和输出来调节系统的状态。传统科学的缺点在于,它只能进行“黑箱操作”,不能解释系统的内部组成成分和动力学过程。而系统生物学则把生物系统化为“白箱”,不仅要了解系统的结构和功能,而且还要揭示出系统内部各组成成分的相互作用和运行规律。

附、补充说明:

20 世纪中贝塔朗菲 (L. Von. Bertalanffy) 创立系统论和理论生物学 - 开拓了系统生物科学 (system bioscience) 的发展 (Maelzer DA. Environment, semantics, and system theory in ecology. J Theor Biol. 1965 May;8(3):395-402,最早在 1958 年 Parry J. B.有关个性心理学的工业文述中出现“systems psychology”名词,还1929发表了Edward B. Titchener 的systematic psychology - 系统心理学文稿):

一、基础:1)、系统生物学 (systems biology, Zieglgansberger W, Tolle TR. 1993);2)、系统生态学 (systems ecology, Van Dyne GM. 1966);3)、系统生理学 (systems physiology, Sagawa K. 1973);4)、系统遗传学* (system genetics, Zeng BJ. 1994 年 11 月)。

二、应用:5)、系统生物医学 (system biomedicine, Kamada T. 1992) 或系统医药学* (systems medicine & pharmacy, Zeng BJ. 1992 年 04 月~1995 年 11 月);6)、系统生物工程* (system bio-engineering, Zeng BJ. 1994 年 06 月)。

[*《转基因动物通讯》1994 年 06 月、11 月,1995 年 03 月、11月,1996 年 08~10 月等 - 来自 1994 年 05 月曾(杰)邦哲 (Zeng BJ) “结构论-泛进化论”(又称自组织系统结构理论)]- 总称为系统生物科学 (1999 年创建的系统生物科学与工程网 genbrain biosystem network 等,所用词汇有: biosystem analytics, artificial biosystem; system bioscience, system bio-engineering, system biotechnology; biosystem science, biosystem engineering, biosystem medicine, biosystem technology, 等)。  

系统生物学的发展[编辑 | 编辑源代码]

实验方法与系统方法构成科学研究的基本方法。系统科学(包括控制论、信息论)根源于生命科学,发展了计算机科学而又应用于生物科学,将开发出生物计算机。维纳与香农从动物与通讯行为的研究中提出控制论与信息论,整个系统科学根植于有机体哲学思维。系统生物学,最初开创于贝塔郎菲的一般系统理论与理论生物学,艾根的超循环理论发展了细胞、生物化学与分子层次的系统论。20 世纪 70 年代国际召开了“系统论与生物学” (systems theory and biology) 会议,80 年代召开了生物化学系统论、生物系统的计算机模型等探讨的国际会议 (第 11 届国际分子系统生物学会议 2009 年 06 月于中科院上海召开)。系统生物学的概念在 20 世纪中叶已经提出,还合成生物学的概念提出于基因重组技术的产生,进化理论、有机分子合成可以说是最早的探索。

系统生物学的发展经历了三个历史时期:第一期,生态系统,系统生态学与行为、心理学,开始于 20 世纪 60~70 年代;第二期,生理系统,系统生理学与神经内分泌免疫学,开始于 20 世纪 70~80 年代;第三期,遗传系统,系统遗传学与胚胎、发育生物学,系统遗传学的概念与词汇于 20 世纪 90 年代中科院曾邦哲(曾杰)发表,并于 1996 年主办第 1 届国际转基因动物学术研讨会(秘书长)与 1999 年在德国建立系统生物科学与工程网,论述了系统论与生物工程、输卵管生物反应器及基因组进化与生物体发育自组织系统理论,遗传学从染色体行为的细胞遗传学、基因表达信息流的分子遗传学,发展到了系统遗传学的细胞发生信号传导与基因调控网络研究。2008 年 03 月美国加州举办了整合与系统遗传学会议,2009 年 10 月荷兰召开了系统遗传学研讨会。

1999 年初系统生物科学与工程网建立及世界联合会、国际会议等筹备 (1999 年 10 月Nature 和 12 月 Kybernetes),定义生物系统理论与实验、计算 (computational)、工程方法的生物系统分析与人工生物系统研究,并阐述其自组织系统结构理论基础。2000 年同期,日本 Kitnano 和 Tomita 举办国际系统生物学会议,美国 Hood 建立系统生物学研究所,美国 Kool 重新提出合成生物学的概念。计算生物技术、组学 (omics) 生物技术与合成生物技术,构成系统生物学发展的技术基础 - 系统生物技术 (systems biotechnology)。21 世纪伊始,权威刊物 Nature、Science 发表系统生物学、合成生物学等专刊,终于进入了系统生物科学全球化时代。细胞是由大规模生物分子(纳米)构成的复杂生物系统,基因组是可以重编程序的智能系统,生命系统人工设计与改造,可以开发出细胞生物机器。